A Guide to Structural Waterproofing

Part One
Waterproofing Protection For Below Ground Structures
• Grace Construction Products, a brand you know and trust has a new name: GCP Applied Technologies.
• Customers in more than 110 countries
• Operations on six continents
• Approximately 2,850 employees with $1.4bn net sales (2015)
BS8102:2009: Code of Practice for Protection of Below Ground Structures against Water from the Ground

- BS8102 gives recommendations and provides guidance of methods of dealing with and preventing the entry of water from surrounding ground into a structure below ground level.

Institution of Civil Engineers (ICE): Reducing the Risk of Leaking Substructure a Clients Guide

- An ICE client guide explaining substructure waterproofing issues and the risks associated with waterproofing
Waterproofing Strategy

- Design Flow Chart
- Design Team
- Clients Requirements
- Desk Study
- Risk Assessment
- Consequences of Failure
Assess the risks from external environment, then adopt a waterproofing strategy capable of achieving client’s requirements

- Early inclusion of waterproofing specialist
- Clear understanding of clients requirements and expectations
- Develop strategy and select waterproofing system as part of overall robust solution

Design Flow Chart

Initial Information
- Design Philosophy
 - Design Team
 - Site Evaluation
 - Desk Study
 - Risk Assessment
- Water table Classification
- Review of Structure
 - Type (e.g., New or Existing?)
 - Intended use
 - Foundation form and design
 - Construction Methodology

Structural Design Considerations

Selection of type A, B or C Waterproofing Protection

Is combined Protection Necessary?

- Has Buildability been considered?
- Has repairability been addressed?

- Yes
- No

Solution
A waterproofing specialist should be included as part of the design team so that an integrated waterproofing solution is created.

The waterproofing specialist should:

- Be suitably experienced;
- Be capable of devising solutions that accommodate various projects constraints and needs;
- Provide the design team with information and guidance that assists with and influences the design, installation and future maintenance of the waterproofed structure.

Note: The waterproofing specialist could be the manufacturer or material supplier, provided that the manufacturer/supplier has the relevant expertise.
Clients Requirements

• Does the client understand the difference between wet; damp; dry?

• Have the costs associated with achieving a DRY basement been considered?

• What are the consequences of failure?

• Has the future use of the building been discussed?
STRUCTURAL WATERPROOFING

Site Evaluation - Desk Study

• Hydrostatic head, water table and perched water table

• Local topography, soil type, contaminants, gas

• Missing information obtained by physical site investigation

BS8102:2009 5.1.1

• Historical information
• Long term water pressures

• Affects of surface water infiltration

• Use of external drainage

• Effects of climate change, burst water mains sewers.

• Effects of drainage on existing neighbouring structures

• Effects of gas or contaminants
For variable or non free draining strata the classification is considered as high.
Potential Water Ingress

- Ingress may occur from more sources than just groundwater.
Consequences of Failure

- Disputes costs, legal fees
- Private or public property damage liability
- Endangerment of building operative or public from damage to electrical equipment
- Damage to archives, stored goods or plant
- Loss of rent
- Reduction in value of property
- Damage to reputation of landlord/developer
- Facility, business disruption
- Lack of access/utility of basement areas
- Costs of remedial work and operational delays
Waterproofing System Selection

- BS 8102:2009 Basement Grades
- BS 8102:2009 Protection Types
- Water Migration
- Guidance on Combined Systems
STRUCTURAL WATERPROOFING

Basement Grades - BS 8102: 2009

Wet

Grade 1 Basic Utility
Car parking; plant rooms (excluding electrical equipment); workshops

Damp

Grade 2 Better Utility
Plant Rooms and Workshops requiring drier environment than grade 1

Dry

Grade 3 Habitable
Ventilated residential and commercial areas incl. offices, restaurants; leisure centres
Apart from managing the risks, it is important to understand the waterproofing options available; each method will have cost and space implications for the basement scheme.
Pre-Applied Bonded Membranes
- Applied prior to placing of structural concrete
- Full and intimate bond
- Eliminates water migration vertically & horizontally
- Suitable for alkaline soil conditions
- Unaffected by wet dry cycling

Bonded Sheet Membranes
- Full & intimate bond vertically
- Eliminates water migration vertically
- Some can be suitable as gas protection
- Some can be used in alkaline soil conditions

Cementitious Coatings
- Designed for negative water pressure
- Eliminates water migration vertically
- Good as solution to complex details
- Ideal as remedial solution
Water Migration
Mastic Asphalt
- Must be applied in three coats
- Dated technology that requires heat
- Can become brittle with age

Mechanical Key Membranes
- Mechanical key to concrete
- Does not resist water migration

Bentonite Carpets
- Mechanical key to concrete
- Does not resist water migration
- Not suitable for alkaline ground
- Wet/dry cycling?
Structural Design
- Controlled crack width
- Additional protection may be needed
- Can be cost prohibitive due to steel content

Concrete Design with Admixture
- Requires proper curing of the in-situ concrete.
- No requirement for vapour barrier
- QSRMC/BSI accredited ready-mix supplier.
- Should be considered as part of a system that includes water stops

Sheet Piled wall
- Additional protection may be needed
- Relies on workmanship
- Can be used as part of a redundant post injection system.
Typical Type C Solutions

Drained Cavity

- Installed internally after construction of basement.
- No hydrostatic pressure on sheets designed more minor seepage.

Open Cavity Design

- Installed after basement construction
- Does not prevent vapour transmission
Use of Combined Protection Systems Reduces Risk

- Consider combining multiple systems of waterproofing where:
 - Assessed external risks are high
 - Consequences of failure to achieve desired internal environment are high.
Detailing - Adopt a Simple Approach

- Involve the waterproofing specialist for advice
- Ensure continuity with above ground DPC/building envelope.
- Consider buildability and order of works.
Potential risks identified in the waterproofing strategy should be understood by the whole team.

Changes to sequence of works will have a major impact on waterproofing integrity.

Ensure the contractor has the prerequisite experience to install the chosen system.
Basement Grades - BS8102
Grade 1 - Wet
Grade 2 - Damp
Grade 3 – Dry

Protection Types
Type A – Barrier
Type B – Structural Integral
Type C – Drained Cavity

- Look for Materials that limit water migration.
- Consider combined systems where the risks & consequences of failure are high
Successful Waterproofing Protection For Below Ground Structures relies on these three elements.

System Choice

Substructure Protection

Design

Workmanship
Any Questions?

Thank you for your attention & participation
THE BRAND YOU KNOW AND TRUST HAS A NEW NAME

For additional information, please visit www.gcpat.com or contact: preprufe@gcpat.com

©2017 GCP Applied Technologies Inc.