

THE GREEN YARDSTICK

ENVIRONMENTAL PRODUCT DECLARATION

In accordance with EN 15804 and ISO 14025

Ecophon Focus[™]/Plant

Programme: The International EPD® System, www.environdec.com Programme operator: EPD International AB EPD Registration number: S-P-00789

Version: 1.1

Date of publication (issue): 2015-11-12 Date of revision: 2022-03-07 Date of validity; 2025-08-28 In accordance with ISO 14025, ISO 21930 and EN 15804

Summary Environmental product declaration

Verified by (external third-party	Martin Erlandsson, IVL Swedish Environmental Research Institute
verifier)	
Programme used	The International EPD System. For more information see www.environdec.com
Registration No	S-P-00789
Owners declaration by	Saint-Gobain Ecophon AB Box 500 265 03 Hyllinge Sweden
Declaration as construction products	The products to be verified herein are acoustic glass wool panels made for sound absorbing ceilings. The present environmental product declaration complies with standard ISO 14025 and describes the environmental impact. Its purpose is to promote compatible and sustainable environmental development of related construction methods. Reference PCR document: EN 15804 as the core PCR + International EPD System Product Category Rule, PCR for constructions products and construction services, Acoustical systems solutions (sub-oriented PCR; appendix to PCR 2012:01) - previously Acoustic
Validity	ceilings. EPD of construction products may not be comparable if they do not comply with EN 15804. 2025-08-28
Content of the declaration	This is an environmental product declaration containing environmental information of the product in the Ecophon family Focus/Plant. The values presented in this EPD are represented for the following products: Focus A/Plant, Focus B/Plant Focus C/Plant, Focus Ds/Plant Focus Dg/Plant, Focus E/Plant Focus F/Plant, Focus Lp/Plant Focus SQ/Plant Supplement product information can be found at www.ecophon.com
UN CPC (Central Product Classification) CODE	37990 37129
Issued date	2020-08-28

Product responsible:

Thomas Roul Product Development Manager Saint-Gobain Ecophon AB Third party verifier:

V Harrenson

Martin Erlandsson, IVL (Independent third-party verifier)

Product description

Product description and description of use:

This Environmental Product Declaration (EPD) describes the environmental impact of $1m^2$ of acoustic ceiling with the intended use to increase sound absorption in a room to create a better indoor environment.

This Environmental Product Declaration (EPD) are valid for products produced in Ecophon production plants in Sweden, Denmark, Poland and Finland with a high-quality glass wool in different densities and thicknesses. The glass wool is covered with a painted or woven surface layer and cut into panels of different sizes and edge designs. The edges are painted and the panels are packed in cardboard boxes.

The structure of glass wool gives the material excellent sound energy absorption properties. Sound absorption is the main function of acoustic glass wool panels. The panels are also light, stable, and easy to handle and cut.

Acoustic glass wool panels are commonly used in schools, offices, health care facilities and production premises where there is a need for noise reduction to improve the working environment. The decrease in reverberation time, sound pressure level and other acoustic parameters are related to the amount of panels used in the room as well as the placement of the panels.

The acoustic panels need no maintenance and do not age. They can last as long as the building itself. For aesthetic reasons, normal room surface cleaning is advised.

Description of the main product components and materials for 1 m² of product:

Parameter	Value (Weight in %)	Post-consumer recycled content
Product thickness	20mm	-
Glass wool	78,8 - 81,3 %	70%
Water based paint	15,3 - 19,5 %	
Glass tissue	2,1 - 3,5 %	-
Water based glue	1,3 - 2,2 %	-
Plastic wrapping	40 g	

	Total Weight													
Product	Focus A	Focus B	Focus C	Focus Ds	Focus Dg	Focus E	Focus F	Focus L P	Focus SQ					
T otal weight (Kg)	1,551	2,492	2,454	2,4767	2,482	2,074	2,457	2,461	2,512					

All raw materials contributing more than 5% to any environmental impact are listed in the table above. The panels are free from substances of very high concern (SVHC). The product contains no substances from the REACH Candidate list (of 15.06.2018).

If there in future occur production changes that generate an increased impact larger than 10% the EPD will be updated and reverified.

Other environmental indicators

Regarding the indoor environment, the Focus/Plant products are certified for or fulfil regulations according to the following table:

Certificate and Regulations	
Finnish M1	
Eurofins Indoor Air Comfort GOLD	

LCA calculation information

Declared unit	1 m² of acoustic celling panel.
Functional unit	1 m² acoustic ceiling with sound absorption class A installed at an ODS of 200mm according to ISO 354.
System boundaries	Cradle to grave: Mandatory stages = A1-3, A4-5, B1-7, C1-4 and optional stage = D This EPD covers the environmental impact of acoustic panels without grid or suspension system.
Reference Service Life (RSL)	50 years
Cut-off rules	The use of cut-off criterion on mass inputs and primary energy at the unit process level (1%) and at the information module level (5%). Flows related to human activities such as employee transport are excluded. Biogenic carbon has not been included in calculations. The construction of plants, production of machines and transportation systems are excluded since the related flows are supposed to be negligible compared to the production of the building product when compared at these systems lifetime level.
Allocations	Allocation criteria are based on mass.
Geographical coverage and time period	For A1-A3 : Whole world For A4 : European covering (2019)

According to EN 15804, EPD of construction products might not be comparable if they do not comply with this standard. According to ISO 21930, EPD's might not be comparable if they are from different EPD administrating schemes.

Life Cycle stages

Flow diagram of the Life Cycle

Product stage, A1-A3

Description of the stage:

The product stage of the glass wool products is divided into 3 modules: A1 "Raw material and supply", A2 "Transport to the manufacturer" and A3 "Manufacturer"

The aggregation of the modules A1, A2 and A3 is a possibility considered by the EN 15 804 standard. This rule is applied in this EPD.

A1 Raw material supply

This module takes into account the extraction and processing of all raw materials and energy which occur upstream to the studied manufacturing process.

Specifically, the glass wool raw material supply covers production of the plant based binder components and sourcing (quarry) of raw materials for fiber production, e.g. sand and borax. Besides these raw materials, recycled materials (glass cullet) are also used as input. Other major raw materials are paint, glass tissue and glue which also are included in the calculation.

Al electricity are taken account for in (GOs) or at least country specific mix.

A2 Transport to the manufacturer

The raw materials are transported to the manufacturing site. In our case, the modelling includes: road, boat or train transportations (average values) of each raw material.

A3 Manufacturing

The manufacturing includes two steps; glass wool production and glass wool panel production. The glass wool panels are produced in a continuous online process starting with applying glass tissue on the glass wool baseboard. The panels are cut into correct size and the edges of the panels are painted. After drying the panels are packed in cardboard boxes.

Manufacturing covers all processes linked to production, which comprises various related operations besides on-site activities such as grinding, painting and drying, packaging and internal transportation.

The manufacturing process also yields data on the combustion of refinery products, such as natural gas, diesel and gasoline, related to the production process.

The environmental profile of these energy carriers is modelled for local conditions.

Packaging-related flows in the production process and all up-stream packaging are included in the manufacturing module, i.e. wooden pallets, cardboard and PE-film.

Apart from production of packaging material, the supply and transport of packaging material are also considered in the LCA model. They are reported and allocated to the module where the packaging is applied. Data on packaging waste created during this step is then generated.

It is assumed that packaging waste generated in the course of production and up-stream processes is 100% collected and either recycled or incinerated with energy recovery, related to material and quality, in ratios according to the local material handling companies.

The glass wool raw material is supplied from three different external locations to all four Ecophon production sites. A representative electricity mix for glass wool production in each country of origin was used. The finished product can be produced in any of Ecophon's four production sites, the split was calculated by mass allocation from production data for year 2019 for all sites involved.

Construction process stage, A4-A5

Description of the stage:

The construction process is divided into 2 modules: A4 "Transport to the building site" and A5 "Installation in the building.

Description of scenarios and additional technical information:

A4 Transport to the building site

This module includes transport from the production gate to the building site.

Transport is calculated on the basis of a scenario with the parameters described in the following table.

Parameter	Value
Fuel type, consumption of fuel and vehicle or vehicle type used for transport	Average truck trailer with a 24t payload, diesel consumption 38 litres for 100 km
Distance	441 km (based on transports in 2019)
Capacity utilisation (including empty returns)	100% of the capacity in volume
Capacity utilisation (including empty ferums)	30% of empty returns
Bulk density of transported products (if available)	54 - 98 kg/m³
Volume capacity utilisation factor (if available)	1

The transport distance has been calculated from a European average transport for Ecophon in 2019 following the parameters in table above.

A5:1 Installation in the building

This module includes waste of products during the implementation, the additional production processes to compensate the loss and the waste processing which occur in this stage.

Scenarios used for quantity of product wastage and waste processing are:

Parameter	Value
Waste of materials on the building site before waste processing, generated by the product's installation	5%
Output materials (specified by type) as results of waste processing at the building site e.g. of collection for recycling,	Packaging waste is 100% collected and modelled as recovered matter
for energy recovering, disposal	Ceiling panel losses are landfilled

A5:2 Energy usage

As a general figure the time to install $1m^2$ ceiling is considered to be 20 minutes. During this time the installer is considered to use handheld appliances for about 5% of this time which in this case results in 1 minute. A handheld device such as a cordless screwdriver is considered to have a power of 0.7 kilowatt. Therefore, in one minute it will consume a total energy of 0.7*60 = 4.2 kilojoule = 0.0042 MJ, per m2 ceiling. In this context it is a negligible contribution and will not be part of the LCA calculation (lower than 0.1% of the total energy consumption).

Use stage (excluding potential savings), B1-B7

Description of the stage:

The use stage is divided into 7 modules, B1 "Use", B2 "Maintenance", B3 "Repair", B4 "Replacement", B5 "Refurbishment", B6 "Operational energy use", B7 "Operational water use"

Description of scenarios and additional technical information:

Once installation is complete, no actions or technical operations are required during the use stages until the end of life stage. Therefore, glass wool ceiling panels have no impact (excluding potential energy savings) on this stage.

End-of-life stage C1-C4

Description of the stage:

The end-of life stage is divided into 4 modules; C1 "De-construction, demolition", C2 "Transport to waste processing", C3 "Waste processing for reuse, recovery and/or recycling", C4 "Disposal".

Description of scenarios and additional technical information:

C1, De-construction, demolition

The de-construction and/or dismantling of glass wool ceiling panels take part during the renovation of the building or the demolition of the entire building. In our case, the environmental impact is assumed to be very small and can be neglected.

C2, Transport to waste processing

The model for transportation (see A4, Transportation to the building site) is applied.

C3, Waste processing for reuse, recovery and/or recycling;

The product is considered to be landfilled without reuse, recovery or recycling.

C4, Disposal;

The product is assumed to be 100% landfilled.

Parameter	Value/description						
Collection process specified by type	1440-2410g of acoustic ceiling (collected with mixed construction waste)						
Recovery system specified by type	No reuse, recycling or energy recovery						
Disposal specified by type	1080 - 1960g of acoustic ceiling is landfilled						
Assumptions for scenario development (e.g. transportation)	Average truck trailer with a 24t payload, diesel consumption 38 litres for 100 km 25 km (distance to landfill)						

Reuse/recovery/recycling potential, D

Description of scenarios and additional technical information:

Packaging waste from module A5 is reported in this module as recovered matter.

LCA results

LCA model, aggregation of data and environmental impact are calculated from the GABI SP40 software, with most Ecoinvent 3,5 datasets and some Gabi datasets.

Raw materials and energy consumption, as well as transport distances have been taken directly from the manufacturing plant of Saint-Gobain Ecophon in 2019.

Summary of the LCA results are detailed on the following tables.

All results in the EPD are written in logarithmic base of ten. Reading example: $5.2E - 03 = 5.2 \times 10^3 = 0,0052$.

MND (module not declared), is equal to MNA (module not assessed).

Difference from previous versions

New company logo.

Reference list

ISO 354:2003: Acoustics - Measurement of sound absorption in a reverberation room

Finnish M1: Emission classification of building materials (M1 Classification): general instructions 12 November 2014

Eurofins Indoor Air Comfort GOLD: Eurofins Indoor Air Comfort GOLD and Indoor Air Comfort Version 7.0 May 2020

Reach: EU REACH Regulation (EC) No 1907/2006

LCA report: 20 08 28 GENERAL REPORT ON ECOPHON LCA

EN 15804:2012+A1:2013: Sustainability of construction works - Environmental product declarations -

Acoustical systems solutions (sub-oriented PCR; appendix to PCR 2012:01) - previously Acoustic ceilings.

PCR 2012:01 Construction products and construction services (version 2.32 dated 2020-07-01)

Environmental impact.

Deren						ental impacts									
i cii cii	meters		Focus A	Focus B	Focus C	Focus Ds	Focus Dg	Focus E	Focus F	Focus L P	Focus SG				
		A1-A3	1,70E+00	2,70E+00	2,60E+00	2,60E+00	2,60E+00	2,20E+00	2,60E+00	2,60E+00	2,60E+0				
		A4-A5	9,90E-02	1,56E-01	1,46E-01	1,46E-01	1,46E-01	1,33E-01	1,46E-01	1,46E-01	1,46E-0				
Global Warming Potential		B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+0				
		C1-C4	1,00E-02	1,60E-02	1,60E-02	1,60E-02	1,60E-02	1,30E-02	1,60E-02	1,60E-02	1,60E-02				
U	(GWP) - kg CO ₂ equiv/FU	D	MND	MND	MND	MND	MND	MND	MND	MND	MND				
		The global warming potential of a gas refers to the total contribution to global warming resulting from the emission of one unit of that gas relative to one unit of the reference gas, carbon dioxide, which is assigned a value of 1.													
		A1-A3	1,90E-07	3,00E-07	3,00E-07	2,90E-07	2,90E-07	2,50E-07	2,90E-07	2,90E-07	3,00E-0				
		A4-A5	9,50E-09	1,50E-08	1,50E-08	1,50E-08	1,50E-08	1,30E-08	1,50E-08	1,50E-08	1,50E-0				
		B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+0				
PA.	Ozone Depletion (ODP) kg	C1-C4	2,00E-18	3,10E-18	3,10E-18	3,10E-18	3,10E-18	2,60E-18	3,10E-18	3,10E-18	3,10E-1				
ש	CFC 11 equiv/FU	D	MND	MND	MND	MND	MND	MND	MND	MND	MND				
			T his destruction		uction of the stratos I by the breakdown when they i	of certain chlorine	and/or bromine con ere and then catalyti	taining compounds cally destroy ozone	(chlorofluorocarbo molecules.		iich break do				
		A1-A3	1,20E-02	2,10E-02	1,70E-02	1,70E-02	1,70E-02	1,80E-02	1,70E-02	1,70E-02	1,70E-0				
		A4-A5	6,33E-04	1,12E-03	8,80E-04	8,70E-04	8,80E-04	9,27E-04	8,70E-04	8,70E-04	8,90E-0				
		B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+0				
25	Acidification potential (AP)	C1-C4	1,30E-05	2,00E-05	2,00E-05	2,00E-05	2,00E-05	1,70E-05	2,00E-05	2,00E-05	2,00E-0				
עש	kg SO ₂ equiv/FU	D	MND	MND	MND	MND	MND	MND	MND	MND	MND				
		A1-A3	T he mai		lepositions have neg ions of acidifying su 4,60E-03						ransport. 4,60E-0				
		A4-A5	1,73E-04	2,84E-04	2,34E-04	2,34E-04	2,34E-04	2,43E-04	2,34E-04	2,34E-04	2,34E-0				
		B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+0				
	Eutrophication potential	C1-C4	2,60E-06	4, 10E-06	4, 10E-06	4,10E-06	4,10E-06	3,40E-06	4,00E-06	4,00E-06	4,10E-0				
								-,	,,	,,	,,				
	(EP) kg (PO ₄) ³ - equiv/FU	D	MND	MND	MND	MND	MND	MND	MND	MND	MND				
	(EP) kg (PO ₄) ³ - equiv/FU			MND	MND enrichment of water						MND				
((EP) kg (PO₄)³- equiv/FU			MND											
	(EP) kg (PO _A) ³ - equiv,FU	D	MND	MND Excessive	enrichment of wate	ers and continental :	surfaces with nutries	nts, and the associa	ited adverse biologic	cal effects.	1,40E-0				
₩	(EP) kg (PO ₄) ³ - equiv/FU	D A1-A3	MND 9,60E-04	MND Excessive 1,40E-03	enrichment of wate	ers and continental s	surfaces with nutries	nts, and the associa	ted adverse biologic	al effects.	1,40E-0 6,62E-0				
	Photochemical ozone creation (POPC) kg Ethene	D A1-A3 A4-A5	9,60E-04 4,43E-05	MND Excessive 1,40E-03 6,32E-05	1,40E-03 6,52E-05	1,40E-03 6,43E-05	1,40E-03 6,52E-05	1,20E-03 5,52E-05	1,40E-03 6,43E-05	1,40E-03 6,43E-05	1,40E-0 6,62E-0 0,00E+0				
	Photochemical ozone	D A1-A3 A4-A5 B1-B7	9,60E-04 4,43E-05 0,00E+00	MND Excessive 1,40E-03 6,32E-05 0,00E+00	1,40E-03 6,52E-05 0,00E+00	1,40E-03 6,43E-05 0,00E+00	1,40E-03 6,52E-05 0,00E+00	1,20E-03 5,52E-05 0,00E+00	1,40E-03 6,43E-05 0,00E+00	1,40E-03 6,43E-05 0,00E+00	1,40E-0 6,62E-0 0,00E+0				
8	Photochemical ozone creation (POPC) kg Ethene	A1-A3 A4-A5 B1-B7 C1-C4	9,60E-04 4,43E-05 0,00E+00 -3,70E-06 MND	MND Excessive 1,40E-03 6,32E-05 0,00E+00 -5,80E-06 MND	1,40E-03 6,52E-05 0,00E+00 -5,80E-06	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND ought about by the l	1,20E-03 5,52E-05 0,00E+00 -4,80E-06 MND	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND	1,40E-0 6,62E-0 0,00E+0 -5,80E-0 MND				
	Photochemical azone creation (POPC) kg Ethene equiv,FU	A1-A3 A4-A5 B1-B7 C1-C4 D	9,60E-04 4,43E-05 0,00E+00 -3,70E-06 MND	MND Excessive 1,40E-03 6,32E-05 0,00E+00 -5,80E-06 MND	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND	1,20E-03 5,52E-05 0,00E+00 -4,80E-06 MND	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND	1,40E-0 6,62E-0 0,00E+0 -5,80E-0 MND				
	Photochemical ozone creation (POPC) kg Ethene equiv,FU	D A1-A3 A4-A5 B1-B7 C1-C4 D	9,60E-04 4,43E-05 0,00E+00 -3,70E-06 MND	MND Excessive 1,40E-03 6,32E-05 0,00E+00 -5,80E-06 MND	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND emical reactions brackroarbons in the p	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND ought about by the l	1,20E-03 5,52E-05 0,00E+00 -4,80E-06 MND ight energy of the s to form ozone is a	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND un. n example of a photographic properties of the control of the contr	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND	1,40E-0 6,62E-0 0,00E+0 -5,80E-0 MND				
	Photochemical azone creation (POPC) kg Ethene equiv,FU	A1-A3 A4-A5 B1-B7 C1-C4 D	9,60E-04 4,43E-05 0,00E+00 -3,70E-06 MND	MND Excessive 1,40E-03 6,32E-05 0,00E+00 -5,80E-06 MND The reaction of nitr 3,80E-06	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND Chogen oxides with hy 3,60E-06	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND emical reactions bradracorbons in the p	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND sught about by the I	1,20E-03 5,52E-05 0,00E+00 -4,80E-06 MND ight energy of the s to form ozone is a	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND un. n example of a phot 3,40E-06	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND	1,40E-0 6,62E-0 0,00E+0 -5,80E-0 MND 3,60E-0				
	Photochemical ozone creation (POPC) kg Ethene equiv,FU Abiotic depletion potential for non-fossil resources	D A1-A3 A4-A5 D A1-A3 A4-A5	9,60E-04 4,43E-05 0,00E+00 -3,70E-06 MND	MND Excessive 1,40E-03 6,32E-05 0,00E+00 -5,80E-06 MND The reaction of nitr 3,80E-06 1,90E-07	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND Choogen oxides with hy 3,60E-06 1,80E-07	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND emical reactions bradrocarbons in the p	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND sught about by the l resence of sunlight 3,50E-06 1,80E-07	1,20E-03 5,52E-05 0,00E+00 -4,80E-06 MND ight energy of the s to form ozone is a 3,50E-06 1,80E-07	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND un. n example of a phot 3,40E-06 1,70E-07	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND tochemical reaction 3,40E-06 1,70E-07	1,40E-0 6,62E-0 0,00E+C -5,80E-C MND 3,60E-0 1,80E-0 0,00E+C				
	Photochemical ozone creation (POPC) kg Ethene equiv,FU Abiotic depletion potential for non-fossil resources (ADP-elements) - kg Sb	A1-A3 A4-A5 B1-B7 C1-C4 D A1-A3 A4-A5 B1-B7	9,60E-04 4,43E-05 0,00E+00 -3,70E-06 MND 3,00E-06 1,50E-07 0,00E+00	MND Excessive 1,40E-03 6,32E-05 0,00E+00 -5,80E-06 MND The reaction of nitr 3,80E-06 1,90E-07 0,00E+00	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND Chogen oxides with hy 3,60E-06 1,80E-07	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND emical reactions braderocarbons in the p	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND sught doou by the I resence of sunlight 3,50E-06 1,80E-07 0,00E+00	1,20E-03 5,52E-05 0,00E+00 -4,80E-06 MND ight energy of the s to form ozone is a 3,50E-06 1,80E-07 0,00E+00	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND un. n example of a phot 3,40E-06 1,70E-07 0,00E+00	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND 10chemical reaction 3,40E-06 1,70E-07 0,00E+00	1,40E-0 6,62E-0 0,00E+0 -5,80E-0 MND				
	Photochemical ozone creation (POPC) kg Ethene equiv,FU Abiotic depletion potential for non-fossil resources (ADP-elements) - kg Sb	A1-A3 A4-A5 B1-B7 C1-C4 D A1-A3 A4-A5 B1-B7 C1-C4	9,60E-04 4,43E-05 0,00E+00 -3,70E-06 MND 3,00E-06 1,50E-07 0,00E+00 1,20E-10	MND Excessive 1,40E-03 6,32E-05 0,00E+00 -5,80E-06 MND The reaction of nitr 3,80E-06 1,90E-07 0,00E+00 1,90E-10	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND Ch ogen oxides with hy 1,80E-07 0,00E+00 1,90E-10	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND emical reactions brackdrocorbons in the f 1,80E-07 0,00E+00 1,90E-10	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND sught about by the I presence of sunlight 1,80E-07 0,00E+00 1,90E-10	1,20E-03 5,52E-05 0,00E+00 -4,80E-06 MND ight energy of the s to form ozone is a 1,80E-07 0,00E+00 1,60E-10	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND un. 3,40E-06 1,70E-07 0,00E+00 1,90E-10	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND tochemical reaction 3,40E-06 1,70E-07 0,00E+00 1,90E-10	1,40E-0 6,62E-0 0,00E+C -5,80E-0 MND 3,60E-0 1,80E-0 0,00E+C 1,90E-1 MND				
	Photochemical ozone creation (POPC) kg Ethene equiv,FU Abiotic depletion potential for non-fassil resources (ADP-elements) - kg Sb equiv,FU	A1-A3 A4-A5 B1-B7 C1-C4 D A1-A3 A4-A5 B1-B7 C1-C4 D	9,60E-04 4,43E-05 0,00E+00 -3,70E-06 MND 3,00E-06 1,50E-07 0,00E+00 1,20E-10 MND	MND Excessive 1,40E-03 6,32E-05 0,00E+00 -5,80E-06 MND The reaction of nilr 3,80E-06 1,90E-07 0,00E+00 1,90E-10 MND	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND Ch ogen oxides with hy 3,60E-06 1,80E-07 0,00E+00 1,90E-10 MND	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND emical reactions brackrocorbons in the p 3,50E-06 1,80E-07 0,00E+00 1,90E-10 MND	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND sught about by the I presence of sunlight 3,50E-06 1,80E-07 0,00E+00 1,90E-10 MND	1,20E-03 5,52E-05 0,00E+00 -4,80E-06 MND ight energy of the s to form zone is a 3,50E-06 1,80E-07 0,00E+00 1,60E-10 MND	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND un. example of a phot 1,70E-07 0,00E+00 1,90E-10 MND	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND tochemical reaction 1,70E-07 0,00E+00 1,90E-10 MND	1,40E-0 6,62E-0 0,00E+0 -5,80E-0 MND 3,60E-0 1,80E-0 0,00E+0				
	Photochemical ozone creation (POPC) kg Ethene equiv, FU Abiotic depletion potential for non-fossil resources (ADP-elements) - kg Sb equiv, FU Abiotic depletion potential	A1-A3 A4-A5 B1-B7 C1-C4 D A1-A3 A4-A5 B1-B7 C1-C4 D	9,60E-04 4,43E-05 0,00E+00 -3,70E-06 MND 3,00E-06 1,50E-07 0,00E+00 1,20E-10 MND 2,50E+01	MND Excessive 1,40E-03 6,32E-05 0,00E+00 -5,80E-06 MND The reaction of nitr 3,80E-06 1,90E-07 0,00E+00 1,90E-10 MND 3,90E+01	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND Ch ogen oxides with hy 3,60E-07 0,00E+00 1,90E-10 MND 3,80E+01	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND semical reactions brackross in the p 3,50E-06 1,80E-07 0,00E+00 1,90E-10 MND 3,70E+01	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND bught doout by the I resence of sunlight 3,50E-06 1,80E-07 0,00E+00 1,90E-10 MND 3,70E+01	1,20E-03 5,52E-05 0,00E+00 -4,80E-06 MND ight energy of the s to form ozone is a 3,50E-06 1,80E-07 0,00E+00 1,60E-10 MND 3,30E+01	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND un. example of a phot 3,40E-06 1,70E-07 0,00E+00 1,90E-10 MND 3,70E+01	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND tochemical reaction 3,40E-06 1,70E-07 0,00E+00 1,90E-10 MND 3,70E+01	1,40E-0 6,62E-0 0,00E+C -5,80E-C MND 3,60E-0 1,80E-0 0,00E+C 1,90E-1 MND 3,80E+C				
8	Photochemical ozone creation (POPC) kg Ethene equiv,FU Abiotic depletion potential for non-fassil resources (ADP-elements) - kg Sb equiv,FU	A1-A3 A4-A5 B1-B7 C1-C4 D A1-A3 A4-A5 B1-B7 C1-C4 D A1-A3 A4-A5	9,60E-04 4,43E-05 0,00E+00 -3,70E-06 MND 3,00E-06 1,50E-07 0,00E+00 1,20E-10 MND 2,50E+01 1,44E+00	MND Excessive 1,40E-03 6,32E-05 0,00E+00 -5,80E-06 MND The reaction of nitr 3,80E-06 1,90E-07 0,00E+00 1,90E-10 MND 3,90E+01 2,22E+00	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND Ch ogen oxides with hy 3,60E-06 1,80E-07 0,00E+00 1,90E-10 MND 3,80E+01 2,12E+00	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND emical reactions bre dracarbons in the processor 1,80E-07 0,00E+00 1,90E-10 MND 3,70E+01 2,12E+00	1,40E-03 6,52E-05 0,00E+00 -5,80E-06 MND sught about by the I resence of sunlight 3,50E-06 1,80E-07 0,00E+00 1,90E-10 MND 3,70E+01 2,12E+00	1,20E-03 5,52E-05 0,00E+00 -4,80E-06 MND ight energy of the s to form ozone is a 3,50E-06 1,80E-07 0,00E+00 1,60E-10 MND 3,30E+01 1,88E+00	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND un. example of a phot 3,40E-06 1,70E-07 0,00E+00 1,90E-10 MND 3,70E+01 2,12E+00	1,40E-03 6,43E-05 0,00E+00 -5,70E-06 MND 1,70E-07 0,00E+00 1,70E-07 0,00E+00 1,90E-10 MND 3,70E+01 2,12E+00	1,40E-0 6,62E-0 0,00E+C -5,80E-0 MND 3,60E-0 0,00E+C 1,90E-1 MND 3,80E+C 2,12E+C				

Resource use

					R esource us	ie					
Param	neters		Focus A	Focus B	Focus C	Focus Ds	Focus Dg	Focus E	Focus F	Focus L P	Focus SQ
	101015	A1-A3	3.00E+01	5.00E+01	4.80E+01	4.80E+01	4.80E+01	4.10E+01	4.80E+01	4.80E+01	4.80E+01
	Use of renewable primary	A4-A5	1,50E+00	2,51E+00	2,41E+00	2,41E+00	2,41E+00	2,10E+00	2,41E+00	2,41E+00	2,41E+00
*	energy excluding renewable	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	primary energy resources used as raw materials - MJ										
	/FU	C1-C4	3,40E-03	5,30E-03	5,30E-03	5,30E-03	5,30E-03	4,40E-03	5,20E-03	5,20E-03	5,30E-03
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND
		A1-A3	5,80E-03	1,10E-02	1,10E-02	1,10E-02	1,10E-02	8,40E-03	1,10E-02	1,10E-02	1,10E-02
*	Use of renewable primary	A4-A5	2,90E-04	5,40E-04	5,40E-04	5,40E-04	5,40E-04	4,20E-04	5,40E-04	5,40E-04	5,40E-04
	energy used as raw materials - MJ /FU	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	malerials - MJ / FO	C1-C4	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND
	T otal use of renewable	A1-A3	3,00E+01	5,00E+01	4,80E+01	4,80E+01	4,80E+01	4,10E+01	4,80E+01	4,80E+01	4,80E+01
	primary energy resources	A4-A5	1,50E+00	2,51E+00	2,41E+00	2,41E+00	2,41E+00	2,10E+00	2,41E+00	2,41E+00	2,41E+00
	(primary energy and primary energy resources	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	used as raw materials) - MJ	C1-C4	3,40E-03	5,30E-03	5,30E-03	5,30E-03	5,30E-03	4,40E-03	5,20E-03	5,20E-03	5,30E-03
	/FU	D	MND	MND	MND	MND	MND	MND	MND	MND	MND
		A1-A3	2,70E+01	4, 10E+01	4,00E+01	4,00E+01	4,00E+01	3,50E+01	4,00E+01	4,00E+01	4,00E+01
6	Use of non-renewable primary energy excluding	A4-A5	1,54E+00	2,32E+00	2,32E+00	2,22E+00	2,32E+00	1,98E+00	2,22E+00	2,22E+00	2,32E+00
	non-renewable primary	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	energy resources used as	C1-C4	1,40E-01	2,20E-01	2,20E-01	2,20E-01	2,20E-01	1,80E-01	2,20E-01	2,20E-01	2,20E-01
	raw materials - MJ /FU	D	MND	MND	MND	MND	MND	MND	MND	MND	MND
	T otal use of non-renewable	A1-A3	2,70E+01	4, 10E+01	4,00E+01	4,00E+01	4,00E+01	3,50E+01	4,00E+01	4,00E+01	4,00E+01
	primary energy resources	A4-A5	1.54E+00	2.32E+00	2.32E+00	2.22E+00	2.32E+00	1.98E+00	2.22E+00	2.22E+00	2.32E+00
	(primary energy and	B1-B7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	primary energy resources	C1-C4	1,40E-01	2,20E-01	2,20E-01	2,20E-01	2,20E-01	1,80E-01	2,20E-01	2,20E-01	2,20E-01
	used as raw materials) - MJ /FU	D	MND	MND	MND	MND	MND	MND	MND	MND	MND
	7.0	A1-A3	7,50E-01	1.60E+00	1.30E+00	1,30E+00	1,30E+00	1.30E+00	1.30E+00	1,30E+00	1,30E+00
	Use of secondary material	A4-A5	3.80E-02	7.90E-02	6.50E-02	6.50E-02	6,50E-02	6.30E-02	6.50E-02	6,50E-02	6.50E-02
1	Kg/FU		.,								
0		B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		C1-C4	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND
	Use of renewable	A1-A3	-	•	•		-	-	-	-	-
	secondary fuels	A4-A5	-					•	-		•
	MJ /FU	B1-B7			-			•	-		•
		C1-C4	-				-	-	-	-	-
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND
		A1-A3	-				-		-		
	Use of non-renewable	A4-A5						-	-	-	-
	secondary fuels - MJ /FU	B1-B7		-	-		-		-		
		C1-C4	-	-	-			-	-		-
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND
		A1-A3	3,20E-02	5,00E-02	4,90E-02	4,90E-02	4,90E-02	4,20E-02	4,90E-02	4,90E-02	5,00E-02
	Use of net fresh water	A4-A5	1,60E-03	2,50E-03	2,50E-03	2,50E-03	2,50E-03	2,10E-03	2,40E-03	2,40E-03	2,50E-03
	m³/FU	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		C1-C4	6,10E-07	9,60E-07	9,70E-07	9,60E-07	9,60E-07	8,00E-07	9,50E-07	9,50E-07	9,70E-07

Waste categories

					Waste C atego	ries					
Paran	neters		Focus A	Focus B	Focus C	Focus Ds	Focus Dg	Focus E	Focus F	Focus L P	Focus SQ
		A1-A3	2,40E-03	2,70E-03	2,80E-03	2,60E-03	2,60E-03	2,60E-03	2,40E-03	2,50E-03	2,80E-03
		A4-A5	1,20E-04	1,40E-04	1,40E-04	1,30E-04	1,30E-04	1,30E-04	1,20E-04	1,20E-04	1,40E-04
	Hazardous waste disposed kg/FU	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	kg/10	C1-C4	9,00E-12	1,40E-11	1,40E-11	1,40E-11	1,40E-11	1,20E-11	1,40E-11	1,40E-11	1,40E-11
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND
		A1-A3	2,70E-02	4,70E-02	4,60E-02	4,60E-02	4,60E-02	3,80E-02	4,60E-02	4,60E-02	4,60E-02
_		A4-A5	8,90E-02	1,40E-01	1,40E-01	1,40E-01	1,40E-01	1,20E-01	1,40E-01	1,40E-01	1,40E-01
	Non-hazardous waste disposed - kg/FU	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
U	disposed - kg/10	C1-C4	2,80E-06	4,40E-06	4,50E-06	4,40E-06	4,40E-06	3,70E-06	4,40E-06	4,40E-06	4,50E-06
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND
		A1-A3	2,30E-05	3,60E-05	3,40E-05	3,40E-05	3,40E-05	3,00E-05	3,30E-05	3,30E-05	3,40E-05
		A4-A5	1,46E-06	2,35E-06	2,25E-06	2,25E-06	2,25E-06	2,01E-06	2,25E-06	2,25E-06	2,25E-06
(意)	R adioactive waste disposed kg/FU	B 1-B 7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	.9/.0	C1-C4	1,60E-07	2,50E-07	2,50E-07	2,50E-07	2,50E-07	2,10E-07	2,50E-07	2,50E-07	2,50E-07
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND

Output flow

					Output flov	vs					
Para	meters		Focus A	Focus B	Focus C	Focus Ds	Focus Dg	Focus E	Focus F	Focus L P	Focus SQ
		A1-A3		-					-	-	
		A4-A5									
6	Components for re-use kg/FU	B1-B7									
	kg/i 0	C1-C4	-	-	-						
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND
		A1-A3	6,60E-02	1,90E-01	3,60E-02	3,60E-02	3,60E-02	1,90E-01	3,60E-02	3,90E-02	3,60E-02
		A4-A5	3,30E-03	9,70E-03	1,80E-03	1,80E-03	1,80E-03	9,60E-03	1,80E-03	1,90E-03	1,80E-03
	Materials for recycling kg/FU	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	kg/i 0	C1-C4	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND
		A1-A3	-	-	-						
		A4-A5		-	-						
	Materials for energy reovery - kg/FU	B1-B7		-	-						
	160Very - kg/r O	C1-C4	-	-	-						
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND
		A1-A3		-	-						
		A4-A5	-	-	-						
	Exported energy MJ/FU	B1-B7	-	-	-						
		C1-C4		-	-						
		D	MND	MND	MND	MND	MND	MND	MND	MND	MND

CONTACT INFORMATION

EPD owner

Saint-Gobain Ecophon AB Box 500 265 03 Hyllinge Sweden

Thomas Roul thomas.roul@saint-gobain.com

LCA author

EANDO AB Tåstrupsvägen 2 262 32 Ängelholm Sweden

Daniel Olausson daniel.olausson@eando.se

Programme operator

THE INTERNATIONAL EPD® SYSTEM

EPD International AB Box 210 60 100 31 Stockholm Sweden info@environdec.com