



THE GREEN YARDSTICK

ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN 15804 and ISO 14025

Ecophon Super G[™]

Programme: The International EPD® System, www.environdec.com Programme operator: EPD International AB Version: 1.0 Registration number: S-P-03232

Date of publication (issue): 2021-03-05 Date of revision: 2022-03-07 Date of validity: 2026-03-05 In accordance with ISO 14025, ISO 21930 and EN 15804

Summary Environmental product declaration

Content summary	
Verified by (external third-party verifier)	Martin Erlandsson, IVL Swedish Environmental Research Institute
Programme used	The International EPD System. For more information see www.environdec.com
Registration No	S-P-03232
Owners declaration by	Saint-Gobain Ecophon AB Box 500 265 03 Hyllinge Sweden
Declaration as construction products	The products to be verified herein are acoustic glass wool panels made for sound absorbing ceilings. The present environmental product declaration complies with standard ISO 14025 and describes the environmental impact. Its purpose is to promote compatible and sustainable environmental development of related construction methods. Reference PCR document: EN 15804 as the core PCR + International EPD System Product Category Rules - PCR for constructions products and construction services, Acoustical systems solutions (sub-oriented PCR; appendix to PCR 2012:01) - previously Acoustic ceilings. EPD of construction products may not be comparable if they do not comply with EN 15804.
Validity	2026-03-05
Content of the declaration	This is an environmental product declaration containing environmental information of the product in the Ecophon family Super G. The values presented in this EPD are represented for the following products: Super G A 20, Super G A 35, Super G Plus, Super G B Supplemental product information can be found at www.ecophon.com
UN CPC (Central Product Classification) CODE	37990 37129
Issued date	2021-03-05

Product responsible:

Huend

Thomas Roul Product Engineering & Development Manager Saint-Gobain Ecophon AB

Independent third party verifier:

V HEAN CRANISSON

Martin Erlandsson LCA Business Development Manager IVL

Product description

Product description and description of use:

This Environmental Product Declaration (EPD) describes the environmental impact of 1m² of acoustic ceiling with the intended use to increase sound absorption in a room to create a better indoor environment.

This Environmental Product Declaration (EPD) are valid for products produced in Ecophon production plants in Sweden, Denmark, Poland and Finland with a high-quality glass wool in different densities and thicknesses. The glass wool is covered with a painted or woven surface layer and cut into panels of different sizes and edge designs. The edges are painted and the panels are packed in cardboard boxes.

The structure of glass wool gives the material excellent sound energy absorption properties. Sound absorption is the main function of acoustic glass wool panels. The panels are also light, stable, and easy to handle and cut.

Acoustic glass wool panels are commonly used in schools, offices, health care facilities and production premises where there is a need for noise reduction to improve the working environment. The decrease in reverberation time, sound pressure level and other acoustic parameters are related to the amount of panels used in the room as well as the placement of the panels. The acoustic panels need no maintenance and do not age. They can last as long as the building itself. For aesthetic reasons, normal room surface cleaning is advised.

Description of the main product components and materials for 1 m² of product:

Parameter	Value (Weight in %)	Post-consumer recycled content
Product thickness	20-40 mm	
Glass wool	61%-85%	70%
Waterborne paint	2% - 4%	•
Glass tissue	12%-31%	
Waterborne glue	2% - 4%	•
Plastic wrapping	40 g	•

Total weights								
Product	Super G A 20	Super G A 35	Super G Plus	Super G B				
Total weight [kg]	1,8	2,6	4,6	4,7				

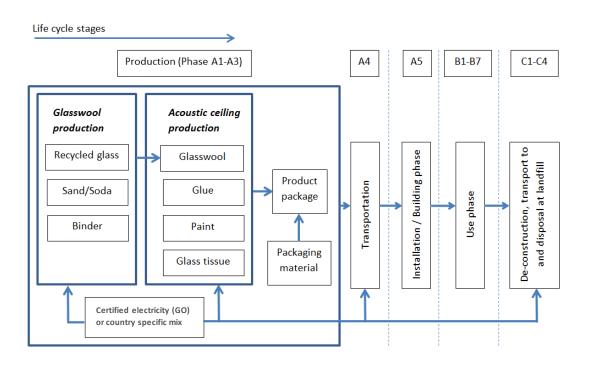
All raw materials contributing more than 5% to any environmental impact are listed in the table above. The panels are free from substances of very high concern (SVHC). The product contains no substances from the REACH Candidate list (of 15.06.2018).

If there in future occur production changes that generate an increased impact larger than 10% the EPD will be updated and re-verified.

Other environmental indicators

Regarding the indoor environment, the Super G products are certified for or fulfil regulations according to the following table:

Certificate and Regulations	
Finnish M1	
Eurofins Indoor Air Comfort	


LCA calculation information

Declared unit	1 m² of acoustic celling panel.
Functional unit	1 m² acoustic ceiling with sound absorption class A installed at an ODS of 200mm according to ISO 354.
System boundaries	Cradle to grave: Mandatory stages = A1-3, A4-5, B1-7, C1-4 and optional stage = D This EPD covers the environmental impact of acoustic panels without grid or suspension system.
Reference Service Life (RSL)	50 years
Cut-off rules	The use of cut-off criterion on mass inputs and primary energy at the unit process level (1%) and at the information module level (5%). Flows related to human activities such as employee transport are excluded. Biogenic carbon has not been included in calculations. The construction of plants, production of machines and transportation systems are excluded since the related flows are supposed to be negligible compared to the production of the building product when compared at these systems lifetime level.
Allocations	Allocation criteria are based on mass.
Geographical coverage and time period	For A1-A3: Global For A4 : European covering (2019)

According to EN 15804, EPD of construction products might not be comparable if they do not comply with this standard. According to ISO 21930, EPD's might not be comparable if they are from different EPD administrating schemes.

Life Cycle stages

Flow diagram of the Life Cycle

Product stage, A1-A3

Description of the stage:

The product stage of the glass wool products is divided into 3 modules: A1 "Raw material and supply", A2 "Transport to the manufacturer" and A3 "Manufacturer". The aggregation of the modules A1, A2 and A3 is a possibility considered by the EN 15 804 standard. This rule is applied in this EPD.

A1 Raw material supply

This module takes into account the extraction and processing of all raw materials and energy which occur upstream to the studied manufacturing process.

Specifically, the glass wool raw material supply covers production of the binder components and sourcing (quarry) of raw materials for fiber production, e.g. sand and borax. Besides these raw materials, recycled materials (glass cullet) are also used as input. Other major raw materials are paint, glass tissue and glue which also are included in the calculation. All electricity is taken account for in (GOs) or at least country specific mix.

A2 Transport to the manufacturer

The raw materials are transported to the manufacturing site. In our case, the modelling includes: road, boat or train transportations (average values) of each raw material.

A3 Manufacturing

The manufacturing includes two steps; glass wool production and glass wool panel production. The glass wool panels are produced in a continuous online process starting with applying glass tissue on the glass wool baseboard. The panels are cut into correct size and the edges of the panels are painted. After drying the panels are packed in cardboard boxes.

Manufacturing covers all processes linked to production, which comprises various related operations besides on-site activities such as grinding, painting and drying, packaging and internal transportation. The manufacturing process also yields data on the combustion of refinery products, such as natural gas, diesel and gasoline, related to the production process.

The environmental profile of these energy carriers is modelled for local conditions. Packaging-related flows in the production process and all up-stream packaging are included in the manufacturing module, i.e. wooden pallets, cardboard and PE-film. Apart from production of packaging material, the supply and transport of packaging material are also considered in the LCA model. They are reported and allocated to the module where the packaging is applied. Data on packaging waste created during this step is then generated. It is assumed that packaging waste generated in the course of production and up-stream processes is 100% collected and either recycled or incinerated with energy recovery, related to material and quality, in ratios according to the local material handling companies.

The glass wool raw material is supplied from three different external locations to all four Ecophon production sites. A representative electricity mix for glass wool production in each country of origin was used. The finished product can be produced in any of Ecophon's four production sites, the split was calculated by mass allocation from production data for year 2019 for all sites involved.

Construction process stage, A4-A5

Description of the stage:

The construction process is divided into 2 modules: A4 "Transport to the building site" and A5 "Installation in the building.

Description of scenarios and additional technical information:

A4 Transport to the building site

This module includes transport from the production gate to the building site. Transport is calculated on the basis of a scenario with the parameters described in the following table.

Parameter	Value
Fuel type, consumption of fuel and vehicle or vehicle type used for transport	Average truck trailer with a 24t payload, diesel consumption 38 litres for 100 km
Distance	475 km (based on transports in 2019)
Can a site utilization (including a smatter sturne)	100% of the capacity in volume
Capacity utilisation (including empty returns)	30% of empty returns
Bulk density of transported products (if available)	54 - 98 kg/m³
Volume capacity utilisation factor (if available)]

The transport distance has been calculated from a European average transport for Ecophon in 2019 following the parameters in table above.

A5:1 Installation in the building

This module includes waste of products during the implementation, i.e. the additional production processes to compensate the loss and the waste processing which occur in this stage.

Parameter	Value
Waste of materials on the building site before waste processing, generated by the product's installation	5%
Output materials (specified by type) as results of waste processing at the building site e.g. of collection for recycling,	Packaging waste is 100 % collected and modelled as recovered matter
for energy recovering, disposal	Ceiling panel losses are landfilled

Scenarios used for quantity of product wastage and waste processing are:

A5:2 Energy usage

As a general figure the time to install $1m^2$ ceiling is considered to be 20 minutes. During this time the installer is considered to use handheld appliances for about 5% of this time which in this case results in 1 minute. A handheld device such as a cordless screwdriver is considered to have a power of 0.7 kilowatt. Therefore, in one minute it will consume a total energy of 0.7*60 = 4.2 kilojoule = 0.0042 MJ, per m² ceiling. In this context it is a negligible contribution and will not be part of the LCA calculation (lower than 0.1% of the total energy consumption).

Use stage (excluding potential savings), B1-B7

Description of the stage:

The use stage is divided into 7 modules, B1 "Use", B2 "Maintenance", B3 "Repair", B4 "Replacement", B5 "Refurbishment", B6 "Operational energy use", B7 "Operational water use"

Description of scenarios and additional technical information:

Once installation is complete, no actions or technical operations are required during the use stages until the end of life stage. Therefore, glass wool ceiling panels have no impact (excluding potential energy savings) on this stage.

End-of-life stage C1-C4

Description of the stage:

The end-of life stage is divided into 4 modules; C1 "De-construction, demolition", C2 "Transport to waste processing", C3 "Waste processing for reuse, recovery and/or recycling", C4 "Disposal".

Description of scenarios and additional technical information:

C1, De-construction, demolition

The de-construction and/or dismantling of glass wool ceiling panels take part during the renovation of the building or the demolition of the entire building. In our case, the environmental impact is assumed to be very small and can be neglected.

C2, Transport to waste processing

The model for transportation (see A4, Transportation to the building site) is applied.

C3, Waste processing for reuse, recovery and/or recycling;

The product is considered to be landfilled without reuse, recovery or recycling.

C4, Disposal;

The product is assumed to be 100% landfilled.

Parameter	Value/description
Collection process specified by type	1440-2410g of acoustic ceiling (collected with mixed construction waste)
Recovery system specified by type	No reuse, recycling or energy recovery
Disposal specified by type	1080 - 1960g of acoustic ceiling is landfilled
Assumptions for scenario development (e.g. transportation)	Average truck trailer with a 24t payload, diesel consumption 38 litres for 100 km 200 km (distance to landfill)

Reuse/recovery/recycling potential, D

Description of scenarios and additional technical information:

Packaging waste from module A5 is reported in this module as recovered matter.

LCA results

LCA model, aggregation of data and environmental impact are calculated from the GABI SP40 software – mostly Ecoinvent 3.6 datasets and some Gabi datasets.

Raw materials and energy consumption, as well as transport distances have been taken directly from the manufacturing plant of Saint-Gobain Ecophon in 2019.

Summary of the LCA results are detailed in the tables below.

All results in the EPD are written in logarithmic base of ten. Reading example: $5.2E \cdot 0.03 = 5.2 \times 10^3 = 0,0052$.

MND (module not declared), is equal to MNA (module not assessed).

Modules declared, geographical scope, and share of specific data (in GWP indicator) are stated in the following table. For stages A1-A3 (largest contribution to total GWP), the raw materials are modelled with very low amount of generic data – over 90% of the GWP comes from specific data.

	Product phase				onstruction ocess phase			End of life phase				Resou rce recov ery phase					
	Raw material and supply	Transport to the manufacturer	Manufacturing	Transport to the building site	Installation in the building	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport to waste processing	Waste processing	Disposal	 Reuse-Recovery-Recycling-potential
Module	Al	A2	A3	A4	A5	B1	B2	Β3	B4	B5	B6	B7	C1	C2	C3	C4	D
Modules declared	Х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	MND
Geography	SE, NL, FR, DK, PL, DE, FI, GB, EU, GLO	SE, NL, FR, DK, PL, DE, FI, GB, EU, GLO	SE, DK, PL, FI	GB, EU, GLO	EU, GLO								GB, EU, GLO	GB, EU, GLO	GB, EU, GLO	GB, EU, GLO	-
Specific data		> 70%	·							-	•		· · · · · · · · · · · · · · · · · · ·	·	·		-

Environmental impact.

			Environmental im	putis		
Paran	neters		Super G A 20	Super G A 35	Super G Plus	Super G B
1 41 411	icici s					
		A1-A3 A4-A5	2,60E+00 2,45E-01	4,06E+00 3,92E-01	6,52E+00 6,59E-01	7,09E+00 6,92E-01
		B1-B7	0,00E+00	0.00E+00	0,00E+00	0,00E+00
- Com		C1-C4	4,31E-01	4,43E-01	5,47E-01	6,20E-01
		D D	NDA	NDA	ND A	ND A
	Global Warming Potential (GWP) -	T ot al A-C	3,28E+00	4,90E+00	7,73E+00	8,40E+00
	kgCO₂ equiv,FU		T he global warming pot	ential of a gas refers to t of one unit of that gas rel	he total contribution to g ative to one unit of the ra ssigned a value of 1.	lobal warming result
		A 1-A 3	2,70E-07	4,49E-07	7,27E-07	8,02E-07
		A 4-A 5	1,42E-08	2,31E-08	3,79E-08	4,12E-08
		B 1-B 7	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		C1-C4	- 4,82E- 16	- 3,96E - 16	- 3,03E- 16	- 4,07E-16
IJ	Ozone Depletion (ODP) kg CF C 11	D	NDA	NDA	NDA	NDA
	equiv/FU	T ot al A-C	2,84E-07	4,72E-07	7,65E-07	8,43E-07
5	A cidification potential (A P) $\rm kgSO_2$ equiv,F U	A4-A5 B1-B7 C1-C4 D T otal A-C	8,91E-04 0,00E+00 2,24E-04 NDA 1,62E-02	1,31E-03 0,00E+00 3,08E-04 ND A 2,47E-02	2,13E-03 0,00E+00 5,30E-04 ND A 4,03E-02	2,29E-03 0,00E+00 5,49E-04 ND A 4,39E-02
			incl, buildings. The n	nain sources for emission	ural ecosystems and the r ns of acidifying substance	es are agriculture and
		A 1-A 3 A 4-A 5 B 1-B 7	incl, buildings. The n	nain sources for emission		es are agriculture and
		A 4-A 5	incl, buildings. The n fossil fuel con 4,44E-03 3,56E-04	ndin sources for emission nbustion used for electric 6,51E-03 5,48E-04	ns of acidifying substance city production, heating of 1,26E-02 1,04E-03	as are agriculture and and transport. 1,34E-02 1,08E-03
	Eutrophication potential (EP) ka	A 4-A 5 B 1-B 7	incl, buildings. T he n fossil fuel con 4,44E-03 3,56E-04 0,00E+00	din sources for emission nbustion used for electric 6,51E-03 5,48E-04 0,00E+00	ns of acidifying substance city production, heating of 1,26E-02 1,04E-03 0,00E+00	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00
.	Eutrophication potential (EP) kg (PO ₄) ^{3,} equiv,FU	A 4-A 5 B 1-B 7 C1-C4	incl, buildings. The n fossil fuel con 4,44E-03 3,56E-04 0,00E+00 5,60E-04	ndin sources for emission nbustion used for electric 6,51E-03 5,48E-04 0,00E+00 5,60E-04	ns of acidifying substance city production, heating of 1,26E-02 1,04E-03 0,00E+00 6,65E-04	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00 7,62E-04
•		A4-A5 B1-B7 C1-C4 D	ind, buildings. The m fossil fuel con 4,44E-03 3,56E-04 0,00E+00 5,60E-04 NDA 5,35E-03	ndin sources for emission hbustion used for electric 6,51E-03 5,48E-04 0,00E+00 5,60E-04 NDA 7,62E-03	as of acidifying substance ity production, heating of 1,26E-02 1,04E-03 0,00E+00 6,65E-04 ND A 1,43E-02	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00 7,62E-04 ND A 1,52E-02
		A4-A5 B1-B7 C1-C4 D Totol A-C	ind, buildings. The m fossil fuel con 3,56E-04 0,000E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03	ndin sources for emission bustion used for electric 6,51E-03 5,48E-04 0,000E+00 5,60E-04 NDA 7,62E-03 t of waters and continent adverse bioloc 2,40E-03	s of acidifying substance ity production, heating of 1,26E-02 1,04E-03 0,00E+00 6,65E-04 ND A 1,43E-02 td surfaces with nutrient regical effects.	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00 7,62E-04 NDA 1,52E-02 s, and the associated 4,30E-03
	(PO _d) ³ . equiv/FU	A4-A5 B1-B7 C1-C4 D Total A-C A1-A3 A4-A5 B1-B7 C1-C4	incl, buildings. The m fossil fuel con 3,56E-04 0,000E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04	ndin sources for emission bustion used for electric 6,51E-03 5,48E-04 0,000E+00 5,60E-04 ND A 7,62E-03 t of waters and continent adverse biolo 2,40E-03 1,76E-04	as of acidifying substance ity production, heating sub- 1,26E-02 1,04E-03 0,00E+00 6,65E-04 ND A 1,43E-02 Id surfaces with nutrient ogical effects. 4,04E-03 3,03E-04	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00 7,62E-04 ND A 1,52E-02 s, and the associated 4,30E-03 3,14E-04
	(PO _d) ³ · equiv,∉U Photochemicd ozone creation	A4-A5 B1-B7 C1-C4 D Totol A-C A1-A3 A4-A5 B1-B7 C1-C4 D	incl, buildings. The m fossil fuel con 3,56E-04 0,00E+00 5,50E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA	ndin sources for emission houstion used for electric 5,48E-04 0,00E+00 5,60E-04 NDA 7,62E-03 t of waters and continent adverse biolo 2,40E-03 1,76E-04 0,00E+00 1,37E-04 NDA	as of acidifying substance ity production, heating sub- ity production, heating sub- ity production, heating sub- operation of the sub- distribution of the sub- operation of the sub- sub- sub- sub- sub- sub- sub- sub-	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00 7,62E-04 NDA 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E+00 1,88E-04 NDA
2	(PO _d) ³ . equiv/FU	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C	incl, buildings. The m fossil fuel con 3,56E-04 0,00E+00 5,56E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemical reactions broa	ndin sources for emission bustion used for electric 6,51E-03 5,48E-04 0,00E+00 5,60E-04 NDA 7,62E-03 t of waters and continent adverse biolo 2,40E-03 1,76E-04 0,00E+00 1,37E-04 NDA 2,71E-03 tight about by the light er he presence of sunlight 1 read	as of acidifying substance ity production, heating sub- ity production, heating sub- ity production, heating sub- operation of the sub- ity of the sub- sub- sub- sub- sub- sub- sub- sub-	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00 7,62E-04 NDA 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E+00 1,88E-04 NDA 4,80E-03 action of nitrogen oxid ple of a photochemic
	(PO _d) ³ · equiv,∉U Photochemicd ozone creation	A4-A5 B1-B7 C1-C4 D Tod A-C A1-A3 A4-A5 B1-B7 C1-C4 D Tod A-C	ind, buildings. The m fossil fuel con fossil fuel con 3,56E-04 0,00E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemical reactions brow with hy drocarbons in 1 5,96E-06	ndin sources for emission bustion used for electric 6,51E-03 5,48E-04 0,00E+00 5,60E-04 NDA 7,62E-03 t of waters and continent adverse biolo 2,40E-03 1,76E-04 0,00E+00 1,37E-04 NDA 2,71E-03 tight about by the light er he presence of sunlight 1 reac 8,01E-06	ss of acidifying substance ity production, heating of 1,26E-02 1,04E-03 0,00E+00 6,65E-04 NDA 1,43E-02 td surfaces with nutrient og cd effects. 4,04E-03 3,03E-04 0,00E+00 1,65E-04 NDA 4,51E-03 nergy of the sun. The rea o form ozone is an exam tion.	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00 7,62E-04 NDA 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E+00 1,88E-04 NDA 4,80E-03 action of nitrogen oxid ple of a phot ochemic 1,35E-05
	(PO _d) ³ , equiv,fU Photochemical azone creation (POPC) kgEthene equiv,fU	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 D Tord A-C D Tord A-C	incl, buildings. The m fossil fuel con fossil fuel con 5,56E-04 0,00E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemicd reactions brow with hy drocarbons in t 5,96E-06 3,21E-07	ndin sources for emission bustion used for electric 5,48E-04 0,00E+00 5,46E-04 NDA 7,62E-03 t of waters and continent adverse biolo 2,40E-03 1,76E-04 0,00E+00 1,37E-04 NDA 2,71E-03 right about by the light er he presence of sunlight 1 reac 8,01E-06 4,24E-07	ss of acidifying substance ity production, heating of 1,26E-02 1,04E-03 0,00E+00 6,65E-04 ND A 1,43E-02 td surfaces with nutrient og cd effects. 4,04E-03 3,03E-04 0,00E+00 1,65E-04 ND A 4,51E-03 nergy of the sun. The rea o form azone is an examption.	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00 7,62E-04 NDA 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E+00 1,88E-04 NDA 4,80E-03 ction of nitrogen oxid ple of a photochemic 1,35E-05 6,99E-07
	(PO _d) ³ · equiv,∉U Photochemicd ozone creation	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 D Tord A-C A1-A3 A4-A5 B1-B7	ind, buildings. The m fossil fuel con fossil fuel con 5,56E-04 0,00E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemical reactions brow with hy drocarbons in t 5,96E-06 3,21E-07 0,00E+00	ndin sources for emission bustion used for electric 5,48E-04 0,00E+00 5,60E-04 ND A 7,62E-03 t of waters and continent adverse biolo 2,40E-03 1,76E-04 0,00E+00 1,37E-04 ND A 2,71E-03 spht about by the light en he presence of sunlight en he presence of sunlight en kg01E-06 4,24E-07 0,00E+00	ss of acidifying substance ity production, heating substance 1,26E-02 1,04E-03 0,00E+00 6,65E-04 ND A 1,43E-02 td surfaces with nutrient gcd effects. 4,04E-03 3,03E-04 0,00E+00 1,65E-04 ND A 4,51E-03 hergy of the sun. The read of form acone is an examption. 1,16E-05 6,05E-07 0,00E+00	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E +00 7,62E-04 ND A 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E +00 1,88E-04 ND A 4,80E-03 ction of nitrogen oxid ple of a photochemic 1,35E-05 6,99E-07 0,00E +00
	(PO _d) ³ , equiv,fU Photochemical azone creation (POPC) kg Ethene equiv,fU	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 D Tord A-C D Tord A-C	incl, buildings. The m fossil fuel con fossil fuel con 5,56E-04 0,00E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemicd reactions brow with hy drocarbons in t 5,96E-06 3,21E-07	ndin sources for emission bustion used for electric 5,48E-04 0,00E+00 5,46E-04 NDA 7,62E-03 t of waters and continent adverse biolo 2,40E-03 1,76E-04 0,00E+00 1,37E-04 NDA 2,71E-03 right about by the light er he presence of sunlight 1 reac 8,01E-06 4,24E-07	ss of acidifying substance ity production, heating of 1,26E-02 1,04E-03 0,00E+00 6,65E-04 ND A 1,43E-02 td surfaces with nutrient og cd effects. 4,04E-03 3,03E-04 0,00E+00 1,65E-04 ND A 4,51E-03 nergy of the sun. The rea o form azone is an examption.	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00 7,62E-04 NDA 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E+00 1,88E-04 NDA 4,80E-03 ction of nitrogen oxis ple of a photochemic 1,35E-05 6,99E-07
	(PO _d) ³ , equiv,fU Photochemical ozone creation (POPC) kgEthene equiv,fU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Tord A-C A1-A3 A4-A5 D Tord A-C A1-A3 A4-A5 B1-B7	ind, buildings. The m fossil fuel con fossil fuel con 5,56E-04 0,00E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemical reactions brow with hy drocarbons in t 5,96E-06 3,21E-07 0,00E+00 -2,10E-09 NDA	ndin sources for emission bustion used for electric 5,48E-04 0,00E+00 5,60E-04 ND A 7,62E-03 t of waters and continent adverse biolo 2,40E-03 1,76E-04 0,00E+00 1,37E-04 ND A 2,71E-03 spht about by the light en he presence of sunlight en he presence of sunlight en kg01E-06 4,24E-07 0,00E+00	ss of acidifying substance ity production, heating substance 1,26E-02 1,04E-03 0,00E+00 6,65E-04 ND A 1,43E-02 td surfaces with nutrient gcd effects. 4,04E-03 3,03E-04 0,00E+00 1,65E-04 ND A 4,51E-03 hergy of the sun. The read of form acone is an examption. 1,16E-05 6,05E-07 0,00E+00	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E +00 7,62E-04 ND A 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E +00 1,88E-04 ND A 4,80E-03 ction of nitrogen oxid ple of a photochemic 1,35E-05 6,99E-07 0,00E +00
	(PO _d) ³ , equiv,fU Photochemical ozone creation (POPC) kgEthene equiv,fU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Tod A-C A1-A3 A4-A5 B1-B7 C1-C4	ind, buildings. The m fossil fuel con fossil fuel con 5,56E-04 0,00E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemical reactions brow with hy drocarbons in t 5,96E-06 3,21E-07 0,00E+00 -2,10E-09	ndin sources for emission bustion used for electric 6,51E-03 5,48E-04 0,00E+00 5,60E-04 NDA 7,62E-03 1,762E-03 1,76E-04 0,00E+00 1,37E-04 NDA 2,71E-03 ught about by the light en he presence of sunlight reco 8,01E-06 4,24E-07 0,00E+00 -4,79E-10	s of acidifying substance ity production, heating sub- start production, heating sub- line sub- distribution (1997) (1997	es are agriculture and and transport. 1,34E-02 1,04E-03 0,00E+00 7,62E-04 ND A 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E+00 1,88E-04 ND A 4,80E-03 action of nitrogen oxio ple of a photochemic 1,35E-05 6,99E-07 0,00E+00 1,84E-09
	(PO _d) ³ , equiv,fU Photochemical ozone creation (POPC) kgEthene equiv,fU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C B A1-A3 A4-A5 B1-B7 C1-C4 B1-B7 C1-C4 D	ind, buildings. The m fossil fuel con fossil fuel con 5,56E-04 0,00E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemical reactions brow with hy drocarbons in t 5,96E-06 3,21E-07 0,00E+00 -2,10E-09 NDA	ndin sources for emission bustion used for electric 6,51E-03 5,48E-04 0,00E+00 5,60E-04 NDA 7,62E-03 1,76E-04 0,00E+00 1,37E-04 NDA 2,71E-03 ught about by the light en he presence of sunlight reac 8,01E-06 4,24E-07 0,00E+00 -4,79E-10 NDA	as of acidifying substance 1,26E-02 1,04E-03 0,00E+00 6,65E-04 ND A 1,43E-02 td surfaces with nutrient agical effects. 4,04E-03 3,03E-04 0,00E+00 1,65E-04 ND A 4,51E-03 https://diffects.scol/ 1,16E-05 6,05E-07 0,00E+00 1,16E-05 6,05E-07 0,00E+00 2,58E-09 NDA	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E +00 7,62E-04 ND A 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E +00 1,88E-04 ND A 4,80E-03 ation of nitrogen oxid ple of a photochemic 1,35E-05 6,99E-07 0,00E +00 1,84E-09 ND A
	(PO _d) ³ , equiv,fU Photochemical ozone creation (POPC) kgEthene equiv,fU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C S B1-B7 C1-C4 D Totd A-C	ind, buildings. The m fossil fuel con fossil fuel con 5,56E-04 0,000E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemical reactions brow with hy drocarbons in t 5,96E-06 3,21E-07 0,00E+00 -2,10E-09 NDA 6,28E-06	ndin sources for emission bustion used for electric 6,51E-03 5,44E-04 0,000E+00 5,60E-04 NDA 7,62E-03 1,76E-03 1,76E-04 0,00E+00 1,37E-04 NDA 2,71E-03 10,76E-04 NDA 2,71E-03 10,76E-04 NDA 2,71E-03 10,76E-04 NDA 2,71E-03 10,76E-04 NDA 2,71E-03 10,77E-04 NDA 2,71E-03 10,77E-04 NDA 8,42E-07 0,00E+00 -4,79E-10 NDA 8,43E-06	ns of acidifying substance ity production, heating sub- ity production, heating sub- ity production, heating sub- ity production, heating sub- ity sub- distribution (heating) (es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E +00 7,62E-04 ND A 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E +00 1,88E-04 ND A 4,80E-03 ation of nitrogen oxid ple of a photochemical 1,35E-05 6,99E-07 0,00E +00 1,84E-09 ND A 1,42E-05
	(PO _d) ³ , equiv,fU Photochemical ozone creation (POPC) kgEthene equiv,fU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C B B1-B7 C1-C4 D Totd A-C B1-B7 C1-C4	ind, buildings. The n fossil fuel con fossil fuel con 5,66E-04 0,000E+00 5,60E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemical reactions brow with hy drocarbons in 1 5,96E-06 3,21E-07 0,00E+00 -2,10E-09 NDA 6,28E-06 3,99E+01	ndin sources for emission bustion used for electric 5,51E-03 5,48E-04 0,000E+00 5,60E-04 ND A 7,62E-03 1,76E-03 1,76E-04 0,00E+00 1,37E-04 ND A 2,71E-03 1,76E-04 ND A 2,71E-03 1,76E-04 ND A 2,71E-03 1,76E-04 ND A 2,71E-03 1,76E-04 ND A 2,71E-03 1,76E-04 ND A 2,71E-03 1,76E-04 0,00E+00 4,24E-07 0,00E+00 -4,79E-10 ND A 8,43E-06 6,25E+01	ss of acidifying substance ity production, heating sub- ity production, heating sub- ity production, heating sub- ity production, heating sub- ity sub- sub- sub- sub- sub- sub- sub- sub-	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E +00 7,62E-04 ND A 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E +00 1,88E-04 ND A 4,80E-03 ction of nitrogen oxid ple of a photochemical 1,35E-05 6,99E-07 0,00E +00 1,84E-09 ND A 1,42E-05 1,13E+02
	(PO ₄) ³ equiv,fU Photochemical azone creation (POPC) kgEthene equiv,fU A biotic depletion potential for non- fossil resources (ADP-elements) - kg Sb equiv,fU	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C B A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C B1-B7 C1-C4	ind, buildings. The n fossil fuel con fossil fuel con 5,56E-04 0,000E+00 5,50E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,35E-04 NDA 1,86E-03 Chemical reactions brow with hy drocarbons in t 5,96E-06 3,21E-07 0,000E+00 -2,10E-09 NDA 6,28E-06 3,99E+01 2,32E+00	ndin sources for emission bustion used for electric 6,51E-03 5,48E-04 0,000E+00 5,60E-04 ND A 7,62E-03 1 of waters and continent adverse biolo 2,40E-03 1,76E-04 0,00E+00 1,37E-04 ND A 2,71E-03 rest 8,01E-06 4,22E-07 0,000E+00 -4,79E-10 ND A 8,43E-06 6,22E+01 3,37E+00	ns of acidifying substance ity production, heating sub- ity production, heating sub- ity production, heating sub- ity production, heating sub- operators and sub- operators and sub- sub- construction of the sub- sub- sub- sub- sub- sub- sub- sub-	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E +00 7,62E-04 ND A 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E +00 1,88E-04 ND A 4,80E-03 ction of nitrogen oxid ple of a photochemica 1,35E-05 6,99E-07 0,00E +00 1,84E-09 ND A 1,42E-05 1,13E+02 6,38E+00
	(PO _d) ³ , equiv,fU Photochemical ozone creation (POPC) kgEthene equiv,fU Abiotic depletion potential for non- fossil resources (ADP-elements) - kg	A4-A5 B1-B7 C1-C4 D Tod A-C A1-A3 A4-A5 C1-C4 D Tod A-C A1-A3 B1-B7 C1-C4 D Tod A-C A1-A3 A4-A5 B1-B7 C1-C4 D	ind, building. The m fossil fuel con fossil fuel con 5,56E-04 NDA 5,35E-03 Excessive enrichment 1,61E-03 1,18E-04 0,00E+00 1,33E-04 NDA 1,86E-03 Chemicd reactions brow with hy drocarbons in t 5,96E-06 3,21E-07 0,00E+00 -2,10E-09 NDA 6,28E-06 3,99E+01 2,32E+00 0,00E+00	ndn sources for emission bostion used for electric 6,51E-03 5,48E-04 0,00E+00 5,60E-04 ND A 7,62E-03 t of waters and continent adverse biolo 2,40E-03 1,76E-04 0,00E+00 1,37E-04 ND A 2,71E-03 tght about by the light er he presence of sunlight 1 reac 8,01E-06 4,22E-07 0,00E+00 -4,79E-10 ND A 8,33E-06 6,25E+01 3,57E+00 0,00E+00	ss of acidifying substance ity production, heating of 1,26E-02 1,04E-03 0,00E+00 6,65E-04 ND A 1,43E-02 td surfaces with nutrient ogical effects. 4,04E-03 3,03E-04 0,00E+00 1,55E-04 ND A 4,51E-03 hergy of the sun. The rea o form azone is an exam tion. 1,16E-05 6,05E-07 0,00E+00 2,58E-09 ND A 1,02E+02 5,84E+00 0,00E+00	es are agriculture and and transport. 1,34E-02 1,08E-03 0,00E+00 7,62E-04 NDA 1,52E-02 s, and the associated 4,30E-03 3,14E-04 0,00E+00 1,88E-04 NDA 4,80E-03 ction of nitrogen oxi- ple of a photochemia 1,35E-05 6,99E-07 0,00E+00 1,84E-09 NDA 1,42E-05 1,13E+02 6,38E+00 0,00E+00

Consumption of non-renewable resources, thereby lowering their availability for future generations.

Resource use

Paran			Environmental im			
	meters		Super G A 20	Super G A 35	Super G Plus	Super G B
		A 1-A 3	1,86E+01	3,61E+01	6,49E+01	6,96E+01
*	Use of renewable primary energy excluding renewable primary energy	A4-A5	1,43E+00	2,28E+00	4,04E+00	4,10E+00
1	resources used as raw materials - MJ	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	/FU	C1-C4	- 1,03E-01	-7,38E-02	- 2,98E - 02	- 5,48E-02
		D	NDA	NDA	NDA	NDA
		T ot al A-C	1,99E+01	3,83E+01	6,89E+01	7,37E+01
		A 1-A 3	1,93E-01	3,97E-01	7,34E-01	7,90E-01
*	U (U	A 4-A 5	9,64E-03	1,99E-02	3,67E-02	3,95E-02
や	Use of renewable primary energy used as raw materials - MJ/FU	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	used as raw indicates - Mg / FO	C1-C4	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		D	NDA	NDA	NDA	NDA
		T ot al A-C	2,03E-01	4,17E-01	7,71E-01	8,30E-01
		A 1-A 3	1,88E+01	3,65E+01	6,57E+01	7,04E+01
	T otal use of renewable primary	A 4-A 5	1,44E+00	2,30E+00	4,08E+00	4,14E+00
	energy resources (primary energy and primary energy resources used as raw materials) - MJ /FU	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		C1-C4	- 1,03E-01	-7,38E-02	- 2,98E - 02	- 5,48E-02
		D	NDA	NDA	NDA	NDA
		T ot al A-C	2,01E+01	3,87E+01	6,97E+01	7,45E+01
			Super G A 20	Super G A 35	Super G Plus	Super G B
		A1-A3	4,41E+01	6,82E+01	1,09E+02	1,21E+02
	U	A4-A5	2,30E+00	3,54E+00	5,90E+00	6,49E+00
-	Use of non-renewable primary energy excluding non-renewable	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	primary energy resources used as	C1-C4	5,26E-01	7,85E-01	1,44E+00	1,47E+00
	raw materials - MJ /FU	D	NDA	NDA	ND A	NDA
		T ot al A-C	4,69E+01	7,25E+01	1,16E+02	1,28E+02
		A1-A3	9,66E-01	1,98E+00	3,87E+00	4,04E+00
	Use of non-renewable primary	A 4-A 5	4,86E-02	9,88E-02	2,02E-01	2,07E-01
-	energy used as raw materials - MJ /	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	FU	C1-C4	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		D	NDA	NDA	NDA	NDA
		T ot al A-C	1,01E+00	2,08E+00	4,07E+00	4,25E+00
		A1-A3	4,50E+01	7,02E+01	1,12E+02	1,25E+02
	T otal use of non-renewable primary	A4-A5	2,35E+00	3,64E+00	6,10E+00	6,69E+00
	energy resources (primary energy	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	and primary energy resources used as raw materials) - MJ /FU	C1-C4	5,26E-01	7,85E-01	1,44E+00	1,47E+00
	as raw indienais) - Mij / Fo	D	NDA	NDA	NDA	NDA
		T ot al A-C	4,79E+01	7,46E+01	1,20E+02	1,33E+02
			Super G A 20	Super G A 35	Super G Plus	Super G B
		A 1-A 3	7,96E-01	1,64E+00	2,81E+00	3,03E+00
	Use of secondary material	A4-A5	4,07E-02	8,21E-02	1,62E-01	1,63E-01
	Kg/FU	B1-B7	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		C1-C4	0,00E+00	0,00E+00	0,00E+00	0,00E+00
		D	NDA	NDA	NDA	NDA
		Total A-C	8,37E-01	1,72E+00	2,97E+00	3,19E+00
			Super G A 20	Super G A 35	Super G Plus	Super G B
				50001 0 71 05		
		A1-A3	0,00E+00	0,00E+00	0,00E+00	0,00E+00
	Use of renewable secondary fuels	A 1-A 3 A 4-A 5	-		0,00E+00 0,00E+00	0,00E+00 0,00E+00
5	Use of renewable secondary fuels MJ /FU		0,00E+00	0,00E+00		
5		A 4-A 5	0,00E+00 0,00E+00	0,00E+00 0,00E+00	0,00E+00	0,00E+00
5		A 4-A 5 B 1-B7	0,00E+00 0,00E+00 0,00E+00	0,00E+00 0,00E+00 0,00E+00	0,00E+00 0,00E+00	0,00E+00 0,00E+00
5		A 4-A 5 B 1-B 7 C1-C4	0,00E +00 0,00E +00 0,00E +00 0,00E +00	0,00E+00 0,00E+00 0,00E+00 0,00E+00	0,00E +00 0,00E +00 0,00E +00	0,00E+00 0,00E+00 0,00E+00
5		A 4-A 5 B 1-B7 C1-C4 D	0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA	0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA	0,00E +00 0,00E +00 0,00E +00 ND A	0,00E+00 0,00E+00 0,00E+00 ND A
5		A 4-A 5 B 1-B7 C1-C4 D	0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 20	0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35	0,00E +00 0,00E +00 0,00E +00 ND A 0,00E +00 Super G Plus	0,00E+00 0,00E+00 0,00E+00 ND A 0,00E+00
5		A4-A5 B1-B7 C1-C4 D T ot d A-C	0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 20 0,00E+00	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00	0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 0,00E+00	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00
5	MJ /FU	A 4-A 5 B 1-B7 C 1-C4 D T ot d A-C A 1-A3 A 4-A5	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 20 0,00E+00 0,00E+00	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00 0,00E+00	0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 0,00E+00 0,00E+00	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00 0,00E+00
5	MJ /FU Use of non-renewable secondary	A4-A5 B1-B7 C1-C4 D T ot d A-C	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 20 0,00E+00 0,00E+00 0,00E+00	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00 0,00E+00 0,00E+00	0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 0,00E+00 0,00E+00 0,00E+00	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00 0,00E+00 0,00E+00
5	MJ /FU Use of non-renewable secondary	A4-A5 B1-B7 C1-C4 D T ot d A-C A 1-A3 A 4-A5 B 1-B7 C1-C4	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 5 uper G A 20 0,00E+00 0,00E+00 0,00E+00 0,00E+00	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00 0,00E+00 0,00E+00 0,00E+00	0,00E+00 0,00E+00 NDA 0,00E+00 Super G Plus 0,00E+00 0,00E+00 0,00E+00 0,00E+00	0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00 0,00E+00 0,00E+00 0,00E+00
55	MJ /FU Use of non-renewable secondary	A4-A5 B1-B7 C1-C4 D T ot of A-C A1-A3 A4-A5 B1-B7 C1-C4 D	0,00E+00 0,00E+00 0,00E+00 ND A 0,00E+00 Super G A 20 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ND A	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA	0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ND A	0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA
5	MJ /FU Use of non-renewable secondary	A4-A5 B1-B7 C1-C4 D T ot d A-C A 1-A3 A 4-A5 B 1-B7 C1-C4	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 20 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00	0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ND A 0,00E+00	0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00
5	MJ /FU Use of non-renewable secondary	A 4-A 5 B 1-B7 C 1-C4 D T ord A-C A 1-A 3 A 4-A 5 B 1-B7 C 1-C4 D T ord A-C	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 20 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G A 20	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G A 35	0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus	0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G B
5	MJ /FU Use of non-renewable secondary fuels - MJ /FU	A 4-A 5 B 1-B7 C 1-C4 D T ord A-C A 1-A 3 B 1-B7 C 1-C4 D T ord A-C A 1-A 3	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 20 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G A 20 4,01E-02	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G A 35	0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ND A 0,00E+00 ND A 0,00E+00 Super G Plus 1,22E-01	0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G B 1,34E-01
5	MJ /FU Use of non-renewable secondary fuels - MJ /FU Use of net fresh water	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 20 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G A 20 4,01E-02 2,14E-03	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G A 35 6,99E-02 3,60E-03	0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 1,22E-01 6,25E-03	0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 1,34E-01 6,83E-03
5	MJ /FU Use of non-renewable secondary fuels - MJ /FU	A 4-A 5 B 1-B7 C 1-C4 D T ord A-C A 1-A 3 B 1-B7 C 1-C4 D T ord A-C A 1-A 3	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 20 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G A 20 4,01E-02	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G A 35	0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ND A 0,00E+00 ND A 0,00E+00 Super G Plus 1,22E-01	0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G B 1,34E-01
5	MJ /FU Use of non-renewable secondary fuels - MJ /FU Use of net fresh water	A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5 B1-B7 C1-C4 D Totd A-C A1-A3 A4-A5	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 20 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G A 20 4,01E-02 2,14E-03	0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G A 35 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 NDA 0,00E+00 Super G A 35 6,99E-02 3,60E-03	0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ND A 0,00E+00 Super G Plus 1,22E-01 6,25E-03	0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NDA 0,00E+00 Super G B 1,34E-01 6,83E-03

Waste categories

Environmental impacts										
Parameters		Super G A 20	Super G A 35	Super G Plus	Super G B					
	A 1-A 3	1,76E-08	3,61E-08	6,23E-08	6,71E-08					
	A 4-A 5	1,47E-09	2,37E-09	4,15E-09	4,17E-09					
Hazardous waste disposed kg/FU	B 1-B 7	0,00E+00	0,00E+00	0,00E+00	0,00E+00					
V Kg/10	C1-C4	1,74E-11	3,84E-11	8,61E-11	8,42E-11					
	D	NDA	NDA	NDA	NDA					
	T ot al A-C	1,91E-08	3,85E-08	6,65E-08	7,14E-08					
		Super G A 20	Super G A 35	Super G Plus	Super G B					
	A 1-A 3	2,48E-01	2,81E-01	8,19E-01	4,95E-01					
Non-hazardous waste	A 4-A 5	1,21E-01	2,25E-01	4,31E-01	4,25E-01					
disposed - kg/FU	B 1-B 7	0,00E+00	0,00E+00	0,00E+00	0,00E+00					
	C1-C4	1,75E+00	2,68E+00	4,98E+00	5,07E+00					
	D	NDA	NDA	NDA	NDA					
	T ot al A-C	2,12E+00	3,19E+00	6,23E+00	5,99E+00					
		Super G A 20	Super G A 35	Super G Plus	Super G B					
	A 1-A 3	5,96E-06	2,18E-05	2,91E-05	5,34E-05					
R adioactive waste disposed	A 4-A 5	- 8,95E - 06	- 1,63E-05	- 3,16E-05	- 3, 13E- 05					
kg/FU	B 1-B 7	0,00E+00	0,00E+00	0,00E+00	0,00E+00					
U	C1-C4	- 4,89E - 05	- 4,59E-05	- 4,85E-05	- 5,77E-05					
	D	NDA	NDA	NDA	NDA					

Output flow

Environmental impacts									
Parameters		Super G A 20	Super G A 35	Super G Plus	Super G B				
Components for re-use kg/f U	A 1-A 3	-	-	•	-				
	A 4-A 5	-	-						
	B 1-B 7	-	-						
	C1-C4	-	-						
	D	NDA	NDA	NDA	NDA				
	T ot al A - C	-	-	-	-				
Materials for recycling kg/F U		Super G A 20	Super G A 35	Super G Plus	Super G B				
	A 1-A 3	2,07E-02	4,26E-02	7,64E-02	8,07E-02				
	A 4-A 5	9,86E-03	1,44E-02	1,72E-02	1,80E-02				
	B 1-B 7	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
	C1-C4	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
	D	NDA	NDA	NDA	NDA				
	T ot al A-C	3,06E-02	5,70E-02	9,36E-02	9,87E-02				
Materials for energy reovery - kg/FU		Super G A 20	Super G A 35	Super G Plus	Super G B				
	A 1-A 3	-	-		-				
	A 4-A 5	-	-		-				
	B 1-B 7	-	-		-				
	C1-C4	-	-	-	-				
	D	NDA	NDA	NDA	NDA				
	T ot al A - C	-	-	-	-				
Exported energy MJ,FU		Super G A 20	Super G A 35	Super G Plus	Super G B				
	A 1-A 3	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
	A 4-A 5	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
	B 1-B 7	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
	C1-C4	0,00E+00	0,00E+00	0,00E+00	0,00E+00				
	D	NDA	NDA	NDA	NDA				
	T ot al A-C	-	-	•	-				

Summary

	Super G A 20	Super G A 35	Super G Plus	Super G B
Global warming				
kg CO ₂ equiv/F	3,28	4,90	7,73	8,40
Non-renewable resources consumption [1]				
MJ/FU	43	67	109	120,60
Energy consumption [2]				
MJ/FU	68	113	190	207,25
Water consumption [3]				
m³/FU	0,04	0,07	0,13	0,14
Waste production [4]				
kg/FU	2,12	3,19	6,23	5,99

[1] This indicator corresponds to the abiotic depletion potential of fossil resources.

[2] This indicator corresponds to the total use of primary energy.

[3] This indicator corresponds to the use of net fresh water.

[4] This indicator corresponds to the sum of hazardous, non-hazardous and radioactive waste disposed.

Reference list

ISO 354:2003: Acoustics - Measurement of sound absorption in a reverberation room

Finnish M1: Emission classification of building materials (M1 Classification): general instructions 12 November 2014

Eurofins Indoor Air Comfort: Eurofins Indoor Air Comfort GOLD and Indoor Air Comfort Version 7.0 May 2020

Reach: EU REACH Regulation (EC) No 1907/2006

LCA report: Project_report_on_Ecophon_LCA_2021-03-03

EN 15804:2012+A1:2013: Sustainability of construction works - Environmental product declarations -

Acoustical systems solutions (sub-oriented PCR; appendix to PCR 2012:01) - previously Acoustic ceilings.

PCR 2012:01 Construction products and construction services (version 2.32 dated 2020-07-01)

Difference from previous versions

New company logo and correction of few product weights on page 3.

CONTACT INFORMATION

LCA author and EPD owner

Saint-Gobain Ecophon AB Box 500 265 03 Hyllinge Sweden

Markus Beckman markus.beckman@ecophon.se

Programme operator

EPD International AB Box 210 60 100 31 Stockholm Sweden info@environdec.com